test of lepton universality in beauty quark decays nature

test of lepton universality in beauty quark decays nature
  • test of lepton universality in beauty quark decays nature

    • 8 September 2023
    test of lepton universality in beauty quark decays nature

    EOS version 0.3.3. D 92, 075022 (2015). Nucl. Reassessing the discovery potential of the BK*+ decays in the large-recoil region: SM challenges and BSM opportunities. Background originates from particles selected from multiple hadron decays, referred to as combinatorial background, and from specific decays of B hadrons. Extended Data Fig. Test of lepton universality with beauty baryons, RpK J. For the electron modes, a wider mass region is needed to perform an accurate fit, but the range chosen suppresses any significant contribution from decays with two or more additional pions that are not reconstructed. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France, M. Chefdeville,D. Decamp,A. G. Downes,Ph. These ratios have been determined to be 2.12.5 standard deviations below their respective SM expectations3,4,5,6,7,16,17,18,19,20,21,22. 2016, 104 (2016). 0 Lane,A. Lupato,T. H. Mcgrath,A. McNab,B. Mitreska,D. Murray,Y. Pan,C. Parkes,F. Reiss,N. Skidmore,P. Svihra,S. Taneja,D. J. Huschle, M. et al. Angular analysis of the B0K*0+ decay using 3fb1 of integrated luminosity. Whenever a process is specified in this paper, the inclusion of the charge-conjugate mode is implied. Jger, S. and Martin, J. Rev. Eur. W. Altmannshofer, P.S. Stanford Libraries' official online search tool for books, media, journals, databases, government documents and more. J. Whenever B+J/(+)K+ events are used to correct the simulation, the correlations between calibration and measurement samples are taken into account in the results and cross-checks presented in this paper. $$B_{\mathrm{s}}^0$$ Clemencic, M. et al. Phys. J. Rev. Khodjamirian, A., Mannel, T. & Wang, Y.-M. BK+ decay at large hadronic recoil. Comput. Rev. The LHCb collaboration et al. Rev. Energy Phys. The results indicate that particles are not behaving in the way they should. Sun, Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia, I. Belov,A. Berezhnoy,I. V. Gorelov,M. Korolev,A. Leflat,N. Nikitin,D. Savrina&V. Zhukov, Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, I. Belyaev,A. Danilina,V. Egorychev,D. Golubkov,P. Gorbounov,A. Konoplyannikov,T. Kvaratskheliya,V. Matiunin,T. Ovsiannikova,D. Pereima,D. Savrina,A. Semennikov&A. Smetkina, INFN Laboratori Nazionali di Frascati, Frascati, Italy, G. Bencivenni,L. Calero Diaz,S. Cali,P. Campana,P. Ciambrone,P. De Simone,P. Di Nezza,M. Giovannetti,G. Lanfranchi,G. Morello,M. Palutan,M. Poli Lener,M. Rotondo,M. Santimaria&B. Sciascia, LPNHE, Sorbonne Universit, Paris Diderot Sorbonne Paris Cit, CNRS/IN2P3, Paris, France, E. Ben-Haim,P. Billoir,L. Calefice,M. Charles,L. Del Buono,S. Esen,M. Fontana,V. V. Gligorov,T. Grammatico,F. Polci,R. Quagliani,D. Y. Tou,P. Vincent&S. G. Weber, Universita degli Studi di Padova, Universita e INFN, Padova, Padova, Italy, A. Bertolin,D. Lucchesi,M. Morandin,L. Sestini,G. Simi&D. Zuliani, Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Krakw, Poland, J. Bhom,J. T. Borsuk,J. Brodzicka,A. Chernov,M. Chrzaszcz,M. W. Dudek,A. Dziurda,M. Goncerz,M. Jezabek,W. Kucewicz,M. Kucharczyk,T. Lesiak,J. J. Malczewski,A. Ossowska,K. Prasanth,M. Witek&M. Zdybal, School of Physics and Technology, Wuhan University, Wuhan, China, L. Bian,H. Cai,B. Fang,X. Huang,L. Sun&J. Wang, S. Bifani,R. Calladine,G. Chatzikonstantinidis,N. Cooke,J. Plews,M. W. Slater,P. N. Swallow&N. K. Watson, Universit di Modena e Reggio Emilia, Modena, Italy, Department of Physics, University of Oxford, Oxford, UK, M. Bjrn,K. M. Fischer,F. Goncalves Abrantes,B. R. Gruberg Cazon,T. H. Hancock,N. Harnew,M. John,L. Li,S. Malde,R. A. Mohammed,C. H. Murphy,T. Pajero,M. Pili,H. Pullen,V. Renaudin,A. Rollings,L. G. Scantlebury Smead,J. C. Smallwood,F. Suljik,G. Wilkinson&Y. Zhang, Massachusetts Institute of Technology, Cambridge, MA, USA, T. Boettcher,D. C. Craik,O. Kitouni,C. Weisser&M. Williams, National Research University Higher School of Economics, Moscow, Russia, A. Boldyrev,D. Derkach,M. Hushchyn,M. Karpov,A. Maevskiy,F. Ratnikov,A. Ryzhikov&A. Ustyuzhanin, Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia, A. Bondar,S. Eidelman,P. Krokovny,V. Kudryavtsev,T. Maltsev,L. Shekhtman&V. Vorobyev, University of Maryland, College Park, MD, USA, S. Braun,A. D. Fernez,M. Franco Sevilla,P. M. Hamilton,A. Jawahery,W. Parker,Y. The techniques used to identify the different particles and to form B+ candidates are described in Methods. The electron and muon veto cuts differ given the relative helicity suppression of ++ decays. 126, 161802 (2021). High Energy Phys. High. The effect on RK is at the 1% level. Extended Data Fig. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton-proton collision data collected with the LHCb detector . J. Lett. Energy Phys. Electrons are identified by matching tracks to particle showers in the electromagnetic calorimeter (ECAL) and using the ratio of the energy detected in the ECAL to the momentum measured by the tracking system. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Rev. This article presents evidence for the breaking of lepton universality in beauty-quark decays, with a significance of 3.1 standard deviations, based on proton-proton collision data collected with the LHCb detector at CERN's Large Hadron Collider. Since the associated data storage and analysis costs would be prohibitive, the experiment does not record all collisions. Eur. s The Belle II physics book. The standard model of particle physics currently provides our best description of fundamental particles and their interactions. Kowalska, K., Kumar, D. & Sessolo, E. M. Implications for new physics in bs transitions after recent measurements by Belle and LHCb. Aubert, B. et al. The veto requirements retain 97% of B+K++ and 95% of B+K+e+e decays passing all other selection requirements. Instrum. High Energy Phys. Measurable quantities can be predicted precisely in the decays of a charged beauty hadron, B+, into a charged kaon, K+, and two charged leptons, +. 3, S08005 (2008). Intriguing new result from the LHCb experiment at CERN | CERN The detector includes a high-precision tracking system with a dipole magnet, providing measurements of momentum and impact parameter (IP), defined for charged particles as the minimum distance of a track to a primary protonproton interaction vertex (PV). A significant proportion (0.7%) of this uncertainty comes from the limited knowledge of the K spectrum in B(0,+)K+(,0)e+e decays. Methods A 764, 150155 (2014). Test of lepton universality in beauty-quark decays, \({q}_{\min }^{2} < {q}^{2} < {q}_{\max }^{2}\), $${R}_{H}\equiv \frac{\int\nolimits_{{q}_{\min }^{2}}^{{q}_{\max }^{2}}\frac{{{{\rm{d}}}}{{{\mathcal{B}}}}\ \ (B\to H{\mu }^{+}{\mu }^{-})}{{{{\rm{d}}}}{q}^{2}}{{{\rm{d}}}}{q}^{2}}{\int\nolimits_{{q}_{\min }^{2}}^{{q}_{\max }^{2}}\frac{{{{\rm{d}}}}{{{\mathcal{B}}}}\ \ (B\to H{e}^{+}{e}^{-})}{{{{\rm{d}}}}{q}^{2}}{{{\rm{d}}}}{q}^{2}}\,.$$, \(\overline{b}\to \overline{s}{\mu }^{+}{\mu }^{-}\), \(\overline{b}\to \overline{c}{\ell }^{+}{\nu }_{\ell }\), \({B}^{+}\to {X}_{q\overline{q}}{K}^{+}\), $${R}_{K}=\frac{{{{\mathcal{B}}}}\ \ ({B}^{+}\to {K}^{+}{\mu }^{+}{\mu }^{-})}{{{{\mathcal{B}}}}\ \ ({B}^{+}\to J/\psi (\to {\mu }^{+}{\mu }^{-}){K}^{+})}/\frac{{{{\mathcal{B}}}}\ \ ({B}^{+}\to {K}^{+}{e}^{+}{e}^{-})}{{{{\mathcal{B}}}}\ \ ({B}^{+}\to J/\psi (\to {e}^{+}{e}^{-}){K}^{+})}\ .$$, $${r}_{J/\psi }={{{\mathcal{B}}}}\ ({B}^{+}\to J/\psi (\to {\mu }^{+}{\mu }^{-}){K}^{+})/{{{\mathcal{B}}}}\ ({B}^{+}\to J/\psi (\to {e}^{+}{e}^{-}){K}^{+}),$$, \({B}^{+}\to {\overline{D}}^{0}(\to {K}^{+}{e}^{-}{\overline{\nu }}_{e}){e}^{+}{\nu }_{e}\), $$\begin{array}{l}{R}_{\psi (2S)}\\=\frac{{{{\mathcal{B}}}}\ ({B}^{+}\to \psi (2S)(\to {\mu }^{+}{\mu }^{-}){K}^{+})}{{{{\mathcal{B}}}}\ ({B}^{+}\to J/\psi (\to {\mu }^{+}{\mu }^{-}){K}^{+})}/\frac{{{{\mathcal{B}}}}\ ({B}^{+}\to \psi (2S)(\to {e}^{+}{e}^{-}){K}^{+})}{{{{\mathcal{B}}}}\ ({B}^{+}\to J/\psi (\to {e}^{+}{e}^{-}){K}^{+})}\ ,\end{array}$$, $${R}_{K}(1.1 < {q}^{2} < 6.0\,{{{{\rm{GeV}}}}}^{2}\,{c}^{-4})=0.84{6}_{-0.039-0.012}^{+0.042+0.013}\ ,$$, \({R}_{K}=0.84{6}_{-\ 0.041}^{+\ 0.044}\), \({B}^{0}\to {K}_{{{{\rm{S}}}}}^{0}{\ell }^{+}{\ell }^{-}\), \({{{\rm{d}}}}{{{\mathcal{B}}}}\ ({B}^{+}\to {K}^{+}{\mu }^{+}{\mu }^{-})/{{{\rm{d}}}}{q}^{2}\), $$\begin{array}{rcl}\frac{{{{\rm{d}}}}{{{\mathcal{B}}}}\ ({B}^{+}\to {K}^{+}{e}^{+}{e}^{-})}{{{{\rm{d}}}}{q}^{2}}(1.1 < {q}^{2} < 6.0\,{{{{\rm{GeV}}}}}^{2}{c}^{-4})\\=(28. (Bottom) the single ratio rJ/ relative to its average value \(< {r}_{J/\psi } >\) as a function of these variables. Energy Phys. The images or other third party material in this article are included in the articles Creative Commons license, unless indicated otherwise in a credit line to the material. Rev. In the muon case, K[] combinations with mass smaller than \(m_{D^0}\) are rejected. Towards the discovery of new physics with lepton-universality ratios of bs decays. Theor. The distribution of this ratio as a function of the angle between the leptons and the minimum pT of the leptons is shown in Extended Data Fig.

    Remington Model 514 Bolt Assembly For Sale, Concerts In California January 2022, Articles T